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ABSTRACT

To solve an integer linear program, we identify

particular values that the objective function can
assume on fe.o.u.e lattice points. inus, we ' i
reduce the problem of finding an optimal integer f
solution of 7 dimensions to that of finding a

feasible integer solution of n-1 dimensions. A
Branch and Bound Method is presented to solve the i
latter problem for the O0-1 case. i
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AN ALGORITHM FOR INTEGER LINEAR PROGRAMMING
BY PARAMETRIC MODIFICATION OF AN ADDED CONSTRAINT

by .
Hajime Eto

1. INTRODUCTION

We define the standard linear programming problem to be that of finding

a vector X to

(1.1) . Maximize 2z = CX

subject to the constraints

(1.2) AX < B ]

;'% . (1.3) X>0 '{

a 4

¥ | where A 18 mxn, X 48 nx1 ,B 18 mx1 and C 18 1 xn . The 1

'? integer linear programming problem is a linear program in which X must }
also satisfy
(1.4) X : integral, ]
i.e., each component of X must be an integer. We will call a vector X ;
satisfying (1.1) and (1.2) a feasible continuous solution, and a feasible X |
tnat also maximizes z = CX an optimal continuous solution. Feasible and ;

optimal integer solutions are similarly defined by requiring that (1.3) be

satisfied.

Rewriting the problem (1.1), (1.2) and (1.3) in the following manner:

(2.1) Maximize z = CX |
(2.2) Subject to AX + AlY =B 1
(2.3) X, Y>0

and applying the simplex method to this problem, we obtain a new representation:
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Maximize z = C°U + K i
Subject to A°U + 1w = B°

U, w2 0

wvhere U and W consist of the same variables as X and Y but in a

different order. We call the components of Y the original basic variables

and the components of W the current basic variables. (W and Y , or X
(o}

and U may or may not be disjoint.) In an optimal representation, C > 0

and B° 20, and an optimal continuous solution is given by U = O and

wepg°,

General Ideas of an Algorithm for the Integer Programming Problem

Hereafter, we assume an optimal continuous solution has been cbtained, ' i

ylelding a value of z = z ‘
Let V denote the sei of all the variables including the slack

variables. Let us denote by G the set of all basic variables. We may

exclude from G the degenerate variables, i.e., the variables which have

zero components in B vector in the current tableau. And we include in G

the dual degenerate variables, i.e., the variables whose shadow prices are

zero 1n the -urrent tableau. ?
Let F denote the set of all the variables with nonzero coefficients

in the objective function. In many integer programming problems, most of the

zero-one integer variables have zero coefficients in the objective (see

Discussion 2 below) anéd F 1s a small subset of V . If a variable has an

upper bound less than one in a range, it is dropped from F because it

must take on value zero there. -

Therefore, the intersection FN G 1is a relatively small subset of V .

Clearly, FN G varies with the basis exchange because G does.

DS ML
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We can assume without loss of generality that all coefficients of the
objective are integers and that their greatest common divisor is one.
However, the greatest common divisor d of all coefficients of variables
belonging to FN G may be larger than one.

One of our basic ideas 1is to -ut the feasible convex by a hyperplane
parallel to the objective.

Experience indicates that an efficient version of Gomory's method of
integer forms occurs by applying Gomory cuts to the value of the objective
function first, (3) (1) (2). In the Gomory cutting method the value of the
functional is limited to be integral. But from a well-known theorem
(Lemma 1 below) in number theory, the value of the functional is confined to
be multiples of d as defined above.

After a candidate for a permissible value of the functional is
identified, we search for a lattice point at which that value is attuined.
In most integer programs, the upper bounds of unknowns are so low that each
of them can take only a few values. Therefore, if we succeed in contracting
the permissible range cof values of the variables belonging to FN G
sufficiently, it may be practicable simplv to enumerate the permissible
combinations of integer values of these variables.

The other basic idea 1is to irtroduce the dual degenerate variables into
the basis one at a time in order to determine a more restricted range of

values of the variables.




2.  THEORETICAL FOUNDATION OF THE ALGORITHM

Definition i. 3

Let F be the set of the variables which may change the value of |
the objective function; i.e., F = {xJ | c, $ 0 and uy £ 1)

where u, > x

b g =
Definition 2. !

Let GP be the set of all the variables whose shadow prices are 4
zero at an extreme point P whether they may or may not be

basic in an ordinary sense of the word '"basic." If a degeneracy

occurs at point P , all of the degenerate variables can he

excluded from GP ; 1.e.,

G, = {x, | ¢

= 3 = 0 and (the associated "Si $#0 if x, 1is basic)}

i 3

Definition 3.

Let d_, be the greatest common divisor (G.C.D.) of these cj

P
for which xj e FN GP siaelvy
d, = G.C.D. (cJ | (cj $ 0) and (Ej = 0 at a point P) and (uj £ 1))
Lemma 1.
If ¢ apd x, are integers, then z cjxJ = kd where k 18 an

h)
]
integer and d 1s the G.C.D. of cj . The proof can be found in (4).

In what follows, some preparation is made for Theorem 1 associated with

Figure 1. .
Let Q0 be a point inside a convex polyhedron. Let H be a hyper-

plane through Q0 with the same slope as the objective function and let H

intersect with the polyhedron at points Ql’QZ’ elove s QN . (Possibly




Qi = QJ for 1 # j 1if more than two constraints meet on the same point.)
Let us consider the smallest subpolyhedron containing QO’QI’ 50 O QN ]

Let V1'V2' eesy V denote extreme points of the subpolyhedron.

U

We can consider another parallel hyperplane #i that intersects the

polyhedron on the same edges as H does. Let 61.62, 000p 5N denofze the /;f
1}

intersecting points so that Q1 and 61 are on the same edge for each 1 . '

Let us take a point 60 on H.

Theorem 1. (Theorem of a Possible Value of the Objective Function to a

Feasible Lattice Point) |

If there is any feasible lattice puint L in the subpolyhedron |

Vlv2 vee Voo then the value of the objective function at L is k d1 3

vhere k 18 an integer and dl is the C.C.D. at the .oint Ql (see

Definition 3).

!
|

Proof:
Let Q and Q, be on the edge VJVk(j ¥ k) and Bj » B, be the
basic variables at VJ 5 Vk respectively. Qi and 51 can be expressed

uniquely as a linear combination of variables in the union of sets

(B, U Bk) . A similar linear combination which is unique holds for all {1 .

3
Since Qo can be expressed uniquely as a linear combination of
(Ql’QZ' 00oC QNI 0 QO can be uniquely expressed as a linear combination of
(BIU BZU oo U BU) .

If we cut the polyhedron by a hyperplane H parallel to the objective
function, then all points on H are optimal feasible (not necessarily
integer) points having the same value of the objective function.

Let us consider an extreme point of the cntting polyhedron on H , say

Ql which is assumed to be on the edge Vlv2 . By repeating the process of

e L SR s S G I B 15 B —‘\W
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. The Slope of the
Objective Function

FIGURE 1: PARALLEL HYPERPLANES
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appropriate basis exchange, we get all such QZ'QB' 3000 QN which have the
same value of the objective function. This fact implies that the variable
introduced into the basis at each time has zero shadow price; in other words,
starting at Q1 all the variables introduced into the basis belong to the
se. G1 - (MI\J 82) . Furthermore, no other variables belong to this set,
because otherwise H would have other extreme points having different values

of the objective. Hence Gl = (B1 U Bz) + S1 where Sl is the set of all

the variables whose shadow prices are zero at Q1 + The same argument holds

for H and 61 and leads us to the conclusion that 51 = (§1LJ 52) + §1 =

(B1 V) BZ) + S1 = G1 .

Similar results can be ‘htained for Qi and 61 for all 1 ; e.g.,

suppose G2 = (B3 ] Bb) + 82 = 62 = (83 U BA) + 82 where Q2 is on edge

V3V4 . (B3 U Ba) , the basis on Q2 » 1s obtained from (Bl v BZ) uniquely
by introducing a variable from the set S1 into the basis and deleting a
variable from the set (B1 U 82) whose shadow price turns zero; in other
words, a variable moves from Sl to (B3 U BA) and another variable moves

from (BItJ BZ) to 52 while the others remain unchanged. Thus G1 = G2 g

Furthermore, we see that Gl = G1 = 62 =%, since Gl = G1 , and 02 = G2 A

The same argurent leads us to the conclusion that Gl = G2 = L., =

GN = G1 = 02 = .. = EN « Since QO and 60 are expressed uniquely as
linear combinations of Ql’ ey QN and 61, ceey aN , respectively, G0
and 60 are the same.

Clearly, since the variable of the set F can change the value of the
objective function, we can drop the variable which do not belong to set F

from consideration. Thus, the theorem 1s proved with help of Lemma 1.

Q.E.D.




Corollary to Theorem 1. (Criterion of an Nonexistence of a Lattice Point)

If bi £ 0 (mod. d(i)) for some 1 , then no lattice point can exist

in the subpolyhedron specified by G where d(i) = G.C.D.

$#0 and u, £ 1} in (2.2).

(aij | x, e F N G) and F, = {xj | 3, ;
Proof: {
From Theorem 1, z aijxj = k d(i) for k integer, while

jIxJeFFC
Z a, . x, = z a,,x, =b in the subpolyhedron specified by G . Hence
b} 1373 jlx e NG 1373 L

h|

bi = k d(i) for k 1integer, thus bi = 0 (mod. d(i)) for all 1 1if any

lattice point exists in the subpolyhedron.

Q.E.D.

Theorem 2. (Theorem of Enumerability)

If there is any lattice point in the subpolyhedron, then it is

necessarily on a hyperplane H (or one of the hyperplanes if there is more
than one such H 1in the same subpolyhedron) whose value of the objective

function is k d (for an integer k ).

Proof: (See Figure 2.)

Let us assume on the contrary that a lattice point L 1is on a
different and parallel hyperplane H whose objective function value is not
k d for any integer k . Here we assume without loss of generality that an
intersecting point M oJf H with an edge is on the same edge as 61 . M
is not necessarily a lattice point.

Since H has the same slope as the objective function, every point on

H has the same value of the objective function. Thus the value of the

oA S T ..:. S S Y

objective function on M ~nd the value of the objective function on L are

equal to an integer value v . The basis which expresses 61 also




vxpresses M . Thus we can see

(61 at 61) = (GM at M) .

This implies v 1s equal to kd . Hence M 1is on one of the hyperplanes
H having k d as the value of the objective function, and so is L . This

co.utradicts the assumption.

Q.E.D.

Theorem 3. (Theorem of the Criteria for Entering Another Subpolyhedron and
Ending the Algorithm Unsuccessfully)

If 61 is an infeasible point before a basis exchange and the

algorithm moves to a feasible point 61' after an appropriate basis }

'f _ exchange, then H given by the added constraint is in another subpolyhedron.

If feasibility can no longer be recovered by any basis exchange, then the
added constraint is out of the feasible domain. :
Proof follows from Figure 3. H 1is out of a subpolyhedron and H is

out of the feasible domain. Theorem 3 justifies Step 3 and Step 9.

e A




FIGURE 2:

A LATTICE POINT ON A CUTTING HYPERPLANE
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FIGURE 3:

ENTRANCE INTO ANOTHER SUBPOLYHEDRON
AND UNSUCCESSFUL TERMINATION
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3. DESCRIPTION OF THE ALGORITHM

Step 1.

Solve the standard Linear Programming Problem without integer
requirement (1.4) and obtain z the optimal value of the
objective.

Let Po stand for the optimal extreme point of the continuous
problem.

Examine whether the solution is integral or not.

If integral, the problem is solved. ;

If otherwise, go to Step 2.

Step 2.

pefine 4 = G.c.p. (aij | %y € F,N G) for all 1 fora

given G where F = {xj | 3y ¥ 0 and u, LI

0 (mod. d(i)) for all 1 or not.

Examine whether bi
If not, then go to Step 9.

Otherwise, go to Step 3.

Step 3.
Add to (1.1), (1.2), (1.3) and (1.4) the following constraint

r :
o

CX<kd
= 00

where do is the greatest common divisor of all the variables

belonging to FN G .




Step 4.

Examine whether or not the solution subject to the augmented
constraints in Step 3 1s feasible without exchanging the basis.
If feasible, go to Step 5.

If otherwise, go to Step 9.

Step 5.

(0) (0)

(0),Q2 s eeer Q)0 of the

Obtain the intersecting points Ql
added constraint r, with the edge of the convex hull by
repeating the basis exchange. (One of the points, say

Q;O) = (xij),xéj), aYero'ls xij). A xéj)) , 18 already obtained
in Step 3.) In more detail, exchange an appropriate basic
variable with one of the dual degenerate variables (i.e., a
variable whose shadow price is zero in the current tableau)
and get another intersecting point with the same value of the
objective.

The number of dual degenerate variables is equal to n-1 (or
less than n-1 1if more than two constraints meet at the same
point), where n 18 the number of the components of X

excluding the slack variables.

If an infeasibility occurs during a basis exchange (i.e., if

one of Qio).Qéo), tele p Q;o) is out of the feasible domain),
go to Step 9.
1f max xij) <1, then define F , F_,d and a s

3

bi £ 0 (mod. new d(i)) for any 1 or the current value of

objective is not k'd for new d and any integer k' , then

(1)

go to Step 8 after resetting old F , F d and d

1 ’

Otherwise, go to Step 6.

again,

.t
.
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Step 6.

Obtain a lattice point (or lattice points) that can be expressed

as a2 -~ +»x combination of the points Qio),Qéo), FIF, Qéo)
Th: -8 that the Xy belonging to F N G must satisfy
(1) _(2) (N) (1) _(2) (2)
max xi ,xi s T » xi ): x1 > min (xi ,x1 s enh xi | < shh
(V) (0) ) .
x, ) for all 1 ¢ FN G where Q1 = (xl 1 Xy" s eeey
(J)
"m-l)‘
Step 7.

Examine whether a lattice point is obtained or not.
If obtained, the algorithm comes to an end.

If otherwise, go to Step 8.

Step 8.

Change the added constraint T parametrically to ro'

CXc¢g (ko - l)do

where C , X are the same as in Step 3 above. Solve the problem

subject to the modified constraints. Go to Step 4.

Step 9. From Step 4)

Identify the next F N G .,

Go to Step 2.

The procedure below is similar to the above case if we substitute
subscript 1 for subscript O and if we replace ''add a constraint r,

CX¢g kodo " with "modify the added constraint r into rl such that

r, : CXgs kldl ." If no extreme point can be found anymore, then the

1

algorithm terminates unsuccessfully.
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Remark to Step 2 and Step 3

A question arises how to know in advance which variables belong to
FN G after the addition of a constraint r, - They do not remain the same
as on P0 .
In order to identify the variables belonging to the current set of

F NG, add for trial a constraint

cCXc<z'
= “o

where z ' = [z ] 1if =z is not an integer, or z '=2z -1 {if 2z is an
o ) () o o o

integer. In other words, zo' is the maximal integer less than z -

We are in position to identify the variables in question by solving the
problem under the added trial constraint. Tie trial constraint may happily
coincide with the true constraint L This procedure is justified by

Theorem 1 if the hyperplane given by zo' and that given by kodo are in

the same polyhedron.

Remark to Step 9

A more detailed procedure to identify a new FN G after
CX< (kb- l)do becomes infeasible is as follows:

If do > 2, then modify the added constraint C X < kodo -1 for trial
and examine whether it is feasible without a basis exchange.

If it is feasible, then repeat the same procedure by reducing the right-
hanc. side of the added constraint by 1 until it becomes infeasible. If it
is infeasible, then a new G N F can be identified in the same manner as in
Remark to Step 2 and Step 3 after basis exchanges. The trial constraint may
happily coincide with the true constraint r, -
Thus if the next subpolyhedron is small, we may "skip" it without

jumping over any lattice points (Figure 4). This occurs because a sub-

pclyhedron cannot contain a lattice point (from Theorem 1) if it does not

M
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have any hyperplane which has an integer value of the objective.

In

Figure 4, a subpolyhedron V2V3V4V5 is skipped and a subpolyhedron

V3V5V6V7 is examined.




o
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Infeasible
Point

LR R R NI,

FIGURE 4: A SKIP OF A SUBPOLYHEDRON
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4. _FINITENESS PROOF

Let each hyperplane be specified by indices K , 1 where K denotes
each subpolyhedron and i denotes each hyperplane in the same subpolyhedron.
| - (1 =0 for K such that the Kth polyhedron does not contain a hyperplane

given by a multiple of dk .)

fl Theorem 4. (Theorem of Finiteness)

The algorithm terminates in a finite number of steps.

3 Proof:

The number of 1 (l.e., the number of times the constraint is modified)
for each K 18 clearly finite since dK >1, and K 1is also finite
because the uumber of the extreme points is finite unless the linear problem

itself is unbounded. For each i , K , the number of basis exchanges is

finite because a hyperplane is n-1 dimensional. After identifying the
range of the values which each variable may assume, the enumeration of all

permissible combinations of the integral values is finite.

‘?.
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5. A GRAPHIC EXPLANATION (FIGURE 5.)

Step 1.
We obtain PO , the optimal point with 2z = z . Examine whether
P0 is a lattice point or not. It is not a lattice point in this

case, 80 we pass to Step 2,

Step 2.

Suppose bi 2 0 (mod. d(i)) for all {1 .,

Step 3.

Cut the convex by line (1)

CX<kd

where do is the greatest common divisor of all the variables
belonging to F NG , and ko is the maximal integer such that

k,*d <z . Suppose we obtain an optimal point Q§0) .

Step 4.

In this case, it is feasible. So pass to Step 5.

Step 5.

By exchanging the basis, we obtain the other optimal extreme

point ng) .

Step 6.

(0),(0)

1 Q2 with-

We search for a lattice point on the segment Q

out success.

Step 7.

We pass to Step 8 because we have failed in obtaining a lattice




point.

Step 8.

Replace line (1) by line (2)
CXzg (ko - l)do

Solve the modified problem subject to (2) without the basis

exchange.
Step 4.

It becomes infeasible without the basis exchange because we

obtain as a solution the intersecting point of line (&) with " M

line (5).
Step 9.

We identify a new FN G below P. by replacing line (2)

1
by 1line (3): C X S kodo - 3 to obtain a new G after

CX<kd -1 and CX < kd -2 are found to be still
= 0 0 = 00

feasible.
Step 2.

Suppose b, = 0 (mod. d(i)

" ) for all 1 again.

Step 3.

Modify T into r, such that

C X g kd

where d] is the greatest common divisor of all the variables

‘elonging to the current set of FN G, and kl is the




qz '
‘ CK=2z
o]
P (0)
2 ( Q
P
P, :
(

<\ o)
Q \

(3)
(2)
" (4)

(5)

21

FIGURE 5: CUTTING THE CONVEX
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maximal integer such that C X < kldl is in the subpolyhedron

P P.P,P. . We obtain Q(l) as a solution to the modified
0123 1
constraint.
Step 4.

It remains feasible without exchanging the basis.

Step 5.

(1)

We obtain the other intersecting point Q2 besides Q{l)

which was obtained in Step 3.

Step 6.

We search for a lattice point on the segment Q{l)Qél) 3

Step 7.

A lattice point is not obtained.

Step 8.
We change the added constraint r to r,' (line (4))

1 1

CX g (k -1d ,

(2)

1 as a solution without exchanging the basis.

and we obtain Q

Step 4. I

The solution remains feasible.

Step 5.

We obtain the other intersecting point by introducing the

(2)
Q

dual degenerate variable into the basis.




Step 6.

We search for a lattice point on the segment Q{Z)Qéz) .

Step 7.

We succeeded in obtaining a lattice point on the segment,

successfully terminating the algorithm.

23




6. NUMFRICAL EXAMPLE

Maximize 2z = 7x, + llox2 + 10x

1

3

9xl + 5x2 + 3x < 34

3

Axl + 5x2 + 6x < 17

4x1 + 10x

Step 1.

2

3

+ Txy 2 30

We obtain as the optimal feasible solution

Ay = 2.6

and

z = 43.4

The solution above 1is not integral.

Step 2.

Add a constraint for trial

7xl + 14x2 + 10x

3

S 43

partly to identify the variables belonging to

Step 4.

The solution is feasible.

Step 9 and Step 2.

After the basis exchange, we are in position to identify

10 %
to GNF.

FNG.

and all three slacks as the variables belonging
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1) 2)

d( = G.C.D. (9,5,1) =1, d( = G.C.D. (4,5,1) =1,

34 =0 (mod. 1) 21 = 0 (mod. 1)
a® < 6.cop. 4,10,1) =1

30 0 (mod. 1)

m

Thus, a lattice point can exist because the slacks in G make

d(i) = 1 for all i1 in this case.

Step 3.

The greatest common divisor of the coefficients of Xy and X,
is 7 and the maximal multiple of 7 not exceeding 43 1is

42 . So we add a constraint

7x1 + 14x2 + 10x3 g 42,

and we obtain a solution

-3 i
1530 *273
and
x3 = 0,
Step 4.

The solution above is feasible.

Step 5.

By introducing one of the dual degenerate variabler into the

basis, we obtain




-y
1

26

and

We successfully obtained an optimal integer solution.

X

B S NPT g

3= 0

i i o H




A noninteger
opt. sol.

27
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ldentify F N G in
a subpolyhedron.

Can a lattice point exist
in the subpolyhedron?

—— — —p ,______#’Yes

No

Ident fy a cutting
hyperpla ie.

-a

1

{

Is the ayperplane in the
subpolyhecron”?

/ 1

A =

Yes

1

Is it in Yes
the convex?

Identify the extreme
points of the hyperplane.

No

Infeasible

o Does a lattice point exist
on the hyperplane?

Yes

FIGURE 6: FLOWS OF THE ALGORITHM
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7. A METHOD FOR FINDING LATTICE POINTS

A problem of searching for lattice points in Step 6 is left unsolved.
One method is to repeat the same procedure, i.e., to reduce the problem
again to a simpler problem to find a feasible solution in n-2 dimensions.
At this time d=1 1is uniformly used for a dummy objective function

z = Z X in all subpolyhedrons; we do not have :o identify G N F anymore

j

because the value of the objective is already fixed.

Another method is to use a branch and bound algorithm which will be
presented below. Emphasis is placed on a 0-1 problem.

As stated in Theorem 2, all extreme points 61,62, 500 QN of a hyper-

plane H can be obtained by repeating the introduction of variables into

the basis whose shadow prices are zero. Let xij) xgj) xiJ),

3y ey s 0y

x(ji) denote the coordinate of Q, (j = 1, ..., N)

™ ]

If there is any lattice point on H whose coordinate is

(xl.xz. ooy X,5 s0sy X ., ) where x should be an integer for all i ,

i mn i
then
= (1) Gn o
21 min (xi ) < %y § max (xi ) uy V i
] A
If [Qi] = [ui] < Qi , then there cannot be any integer X, between uy
and 21 g

Rule 1. (Criterion of Absence of a Lattice Point)

1f [ui] < 21 hold for some i , then H ia disregarded.

Rule 2. (Criterion of Zero Valur of a Variable)

1f vy < 1, then x, = 0.

Hereafter, we consider only O0-1 case.
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Rule 3. (Criterion of Value One of a Variable)

If 2, >0, then x, =1 . Rules 2 and 3 fix some variables

i i

on H ’
|

On a particular hyperplane H , the value of the objective function 1s /

already fixed. Hence, we no longer care about optimizing it. The order in

which the variables are assigned values is unimportant, contrary to the z

ordinary branch and bound algorithm in which we have to take into account :

the variables in a predetermined order. In our case, the only criterion that

must be satisfied is Z c.,x, =k d. Hence we will take the assignment
33
JeG
of the variable's value in the simplest order, namely in the ascending order .

of the indices of the variables.

Hereafter, we assume ¢, > 0 for all j . (If not, we can obtain it

3

by resetting xj = l—xj .) For the sake of simplicity let us assume the

first f variables are already fixed.

An Algorithm of Enumeraticns by Branch Method

n

(1) L e e

solution by assigning value zero to all other unfixed

= kd for n' < n, then we obtain an integer

variables.
(1-1) 1If the solution is feasible, we have obtained an integer

feasible solution. '
(1-2) If the solution is not feasible, then disregard this branch

and search another branch.

n'

(2) If ) c,x, <
45y 97
and search ancther branch for a larger value of | ijj .
n' j

3) 1f z cjxj >k d for n' <n, then go back to the branch
i=1

and search another branch for a smaller value of z ijj

]

o

k d for n' = n, then go back to the branch
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A Numerical Example of Enunuuc.gaticns

Let the objective function be 9x1 + 16x2 + 4x3 + 12x4 . Let us assume

X, never appears as a basic variable ac this stage. Hence d = G.C.D.

1
(16,4,12) = 4 . Suppose k=5 1is appropriate at this stage, therefore
z=5x4=20. Let 61 = (0,0.25,1,1) , 62 = (0,0.875,0,0.5) ,

Qy = (0,1,1,0) =q, . Thus, 0 <x

<0,0.25<x,<1,0<x,<1

1 2= 3—-""
0 < x, <1 . By Rule 2, X, = 0 and by Rule 3 x, = 1 . The only unfixed
variables are Xq and X, » In Figure 7, a figure on the left side of a

slash denotes a value taken on by a variable in the right column and a
figure on the right side of the slash denotes a value of the objective
function taken on a solution associated with an arc.

We start with Arc 1 to which a value 16 is associated as the objective
function. 16 is sm~ller than 20, therefore we proceed until we reach or
exceed 20. We consider Arc 2 where we reach an end of a branch, but its
value 16 is too small, so we search another branch for a bigger value.
(Procedure 2.) We consider Arc 3 but its value 28 is too large, therefore
we go back. (Procedure 3.) We consider Arc 4 where its value is exactly
20, Thus, we assign x, @ zero value. Hence, automatically we move to
Arc 5 by disregarding Arc 6. (Proceocure 1.) We examine whether Arc 5 is

feasible or not. Arc 5 happens to coincide with 63 , therefore it is

feasible. (Procedure 1-2.)

Another Numerical Example

Let us consider the same objective function and a different k=6 .

Hence, the .riterion is 9xl + 16x2 + 4x3 + 12x4 = 24 ., Let

q, = (0,1,0,2/3) , §, = (0,1,1,1/3) and §; = (0,1,1/2,5/12) = Q, .
” 4] 0 <, = 1/3 . Hence, there cannot be any integer feasible
solution. Thus, we must disregard this hyperplane. (Rule 1.)

u, = 2/3 [u




FIGURE 7:

0/16 = = = = x, ¢ {0,1}

[

A TREE

TRy

31

il ot

el




*
»

g - = o kil
-
.

32

The algorithm presented above is a branching algorithm; but it is a
bound:ng algorithm in a somewhat different sense than usually conveyed by the
term "branch and bound." For each H a value of the objective function is
already fixed, so we do not need to evaluate it anymore. Instead, we give
an upper and a lower bound to each variable.

A criterion t nction given here is the criterion to see whether an arc
is feasible or not, as opposed to the ordinary branch and bound algorithm
where the criterion is: which variable should be considered next.

No evaluation after setting a hyperplane H 1is made in the algorithm

presented above.
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8. DISCUSSIONS

Another Starting Procedure

We have started with an optimal continuous solution. But we can also
start with a feasible integer solution if it is already given. In the latter
case, we always have a feasible integer solution and we proceed to a better
integer solution until an optimal continuous solution is reached or exceeded.

The termination criterion is the same as in the former case.

The Possible Application of the Algorithm

Let us assume that the matrix A (in A X =B) 1s m x (n+m) (with
m slack variables). Without degeneracy, m basic variables are associated
at each 61 » and one extreme point is already identified on H. Hence,
(n-1) nonbasic variables assume zero shadow prices at 61 . Thus,
(m + (n-1)) variables belong to Ei at V1 . This leaves out one variable.
In particular if a slack variable is this exception, ghen FN G1 = F . But
consider the problem of m constraints Di(xl’ s Sl xn) 20 =1, ..., m),

of which at least m' constraints are required to be satisfied with integral

X for all j . The problem is represented as follows:

g

D -»QA :0 (i-l. --o’m)

Ay = {0, 1}

where 21 < Di for each 1 . In this problem in addition to (m+n)

variables, there are m \A-variables whose coefficients are all zero in the
objective function. The cardinal number of Gi = mn - 1 > the cardinal

number of F N Gi

> max (0, n-m - 1)
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while the total number of the variables equal 2 m + n . Thus we can see if
n 1i: not too large for m , the set F N Gi is a relatively small subset
of the set of all the variables.

When G consists mostly of slack variables and A, 's , d may be greater

i
than one. Thus, a cutting hyperplane method may work efficiently. On the
other hand, many d(i)'s are equal to one because coefficients of slack

variables are one in constraints.

4D

When G consists mainly of nonslack variables, then the s may
be greater than one and Scep 2 may work efficiently in excluding from
consiteration subpolyhedrons which cannot contain a lattice point. On the

other hand, the cutting hyperp.ane method may not work so well 1in this case

because d may be close to cne.
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